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We introduce the use of the concept of continuity in symmetry and chirality as a novel
descriptor of the structure of the building blocks of materials. These measures are of global
nature, and take into account all angles and bond lengths of the molecular building blocks.
The particular example we have selected for a detailed analysis is (low) quartz. All of its
main building blocks, namely the elementary SiO4 tetrahedron, the Si(OSi)4 unit, the silicon
atoms tetrahedron SiSi4, and six of its internal helical structures, were investigated in detail
as to their degree of chirality, tetrahedricity content, degree of distortion from C2-symmetry,
and more. Specific chirality is defined and its value determined for low and high quartz and
for cristobalite. The most chiral unit within quartz was found to be a four-SiO4 segment
helix.

1. Background: General Motivation for This
Study

Many material properties are inherently associated
with the symmetry of the building block (its point group)
and with its packing symmetry (the space group).
Whereas the treatment of symmetry/material-property
relations has been carried out mainly in terms of exact
symmetry groups, quite often these symmetries are only
approximate. These imperfect symmetries can be found
from the molecular level (the molecular building blocks
of materials), through mesoscopic scales (small ag-
gregates and clusters, liquid crystals), and up to mac-
roscopic objects. There is therefore a current problem
which is quite major: exact symmetry language and
tools are used for the treatment of common cases where
symmetry is, at most, only nearly exact. Let us ex-
emplify the symmetry problem with a specific example
that will serve us also later on, namely the SiO4 unit.

The SiO4 tetrahedron is a common molecular building
block of thousands of materials. These include some 900
natural silicates,1 many natural2 and synthetic3 zeolites
(such as the intensively studied MCM materials4),
numerous noncrystalline solids including various glasses,
a vast range of porous materials,5 composites prepared
by the sol-gel process6 and many more. It is evident
therefore that the SiO4 unit is a very versatile “Lego-
type” building block, with which one can construct

practically endless types of different structures, both
crystalline and disordered. What makes it so versatile?
It turns out that while the SiO4 unit is fairly rigid and
nearly tetrahedral (deviations from perfect tetrahedral
symmetry were first noticed by Jones and Taylor in
feldspars silicate7 and a year later in quartz8,9), the
Si(OM)4 unit (where M is Si, Al, etc.) is the one which
displays a rich variety of combinations of Si-O-M bond
angles (from 180° down to 120° 1), of tilt angles between
neighboring tetrahedral units, and of bond lengths.10

Thus, while the first shell tetrahedron, SiO4, retains
much of its tetrahedricity, the second shell tetrahedron,
SiM4, may (but need not) be distorted. Traditionally,
these distortions of silicon-oxide based materials have
been investigated - both experimentally and theoreti-
cally - in terms of specific geometric parameters such
as bond angles and bond lengths, which are obtained
from either X-ray data analyses or from theoretical
calculations.11,12 However, this specific-parameter ap-
proach has suffered from a basic difficulty. First, in the
vast majority of the crystalline and noncrystalline
silicon oxide-based materials, the Si-O-M and the
O-Si-O bond angles need not distort uniquely, but
each of the angles may distort differently; and second,
the distortion of the molecular building block shows up
not only in its angles but also in the bond lengths, all
four of which may, again, need not be equal. Approaches
to treat this inherent difficulty have been in several
directions. One approach has been to use averages of
the main distortive parameters, such as taking an
average of angles;10,13,14 another has been to display
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separately each of the relevant geometric parameters
and their changes;15 and a third has been even to
assume that distorted structural features are actually
not distorted (such as the assumption that the SiO4 unit
is a perfect tetrahedron16). We propose, therefore, that
what is crucially needed in materials science is a global
view of the overall distortion, which takes into account
all of the specific changes in a unified form.

How then is it possible to look at the distortion of a
structure as a global whole which takes into account
simultaneously all angles and bond-lengths? A struc-
tural feature of the building blocks, which indeed
provides such a global view is their symmetry. For
instance, the various SiO2-based materials do differ in
their “degree of tetrahedricity”17 (to be defined shortly),
and even more so the second shell tetrahedron, SiSi4
(of the Si(OSi)4 unit). Hence, if one could indeed measure
the degree of symmetry on a quantitative continuous
level, then one would have at hand a new structure-
analysis tool that would relate to the whole, and would
open the possibility of searching for correlations with
properties which are inherently dependent on sym-
metry.

The quantitative measurements of symmetry and of
chirality have been a major theme of research and
development in our research group, and in Section 2 we
briefly overview its main elements, which are needed
for this report. In fact, this report is the first in which
we extend the now well-developed symmetry-measure-
ment methodology to the world of materials science, and
we have selected quartz for that purpose. Why quartz?

We made this selection because of the unique struc-
tural properties of this material which we list in Section
3; because it is a classical prototype of the large family
of SiO2-based materials; and because it is a first step
toward the understanding of symmetry and chirality
issues of disordered SiO2 materials in general, and sol-
gel materials in particular.18,19 One of many questions
associated with sol-gel materials in this context is, for
instance, what makes the molecular building blocks of
sol-gel materials suitable for (chiral) templating.18,20

The most dominant structural characteristic of quartz
is the overall arrangement of the SiO4 tetrahedra in a
beautiful double-helix (Figure 1, left) leading to its
chirality. The question of the local origin of long-range
structural features is one of the more interesting ones
in materials science, and we shall return to it in detail
below. The chirality of quartz leads to some important
properties: quartz rotates polarized light (the first
material recognized with this property21-24), and it is

piezoelectric.25 Before entering the detailed symmetry
and chirality analysis of the molecular building blocks
of quartz, we outline the methodology of the measure-
ment of symmetry and chirality and introduce the
concept of specific symmetry and specific chirality.

2. Quantitative Evaluation of the Degree of
Symmetry and Degree of Chirality

2.1. General Overview. We have developed the
notion that it is natural to evaluate, on a quantitative
scale, how much of a given symmetry there is in a
structure.26-28 Toward the implementation of this notion
we developed a general symmetry measurement tool
which is based on finding the minimal distances that
the points of a shape have to undergo in order for it to
attain the desired symmetry. It is a special distance
function in that the target shape itself is unknown a
priori. Using this measurement procedure - the con-
tinuous symmetry measure (CSM) - it has become
possible to evaluate quantitatively how much of any
symmetry exists in a nonsymmetric configuration; what
is the nearest symmetry to that configuration; and what
is the actual shape of the nearest symmetric structure.
Closely related is the continuous chirality measure
(CCM) which evaluates the distance to the nearest
achiral symmetry point group.29 We have demonstrated
the feasibility and versatility of this approach on a wide
variety of symmetry/chirality related issues. Examples
include the measurement of the symmetry content of
distorted classical polyhedra;30-32 the assessment of the
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Figure 1. Molecular helical structure of low quartz (P3221).
Top: Projection along c axis. Bottom: Side view along the b
axis. Helix H-3 (right) has three SiO4 tetrahedra per turn.
Helix H-6 has six tetrahedra per turn. H-6 is composed of a
pair of helices of the same handedness, one of which is shown
(bottom left) with shadows, and the other without shadows.
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symmetry content of objects which contain an element
of randomness in their construction;33 symmetry analy-
ses of small clusters34 and of large disordered ag-
gregates;35 symmetry and chirality analyses of enzy-
matic activities, establishing quantitative symmetry as
a novel tool in QSAR studies;36,37 and the identification
of many correlations between symmetry/chirality and
molecular properties, examples being correlations be-
tween spectral properties and the degree of symmetry
distortion38 and a correlation between the degree of the
chirality and the efficiency of chromatographic chiral
separation.39 In general, it became clear from these
studies and from studies of other research groups31,40-48

that the global-shape descriptors - quantitative sym-
metry and quantitative chirality - shed new light on
many classical problems in structural chemistry.

2.2. CSM and CCM Methodologies. I. Degree of
Symmetry. According to the CSM methodology,17,28

given a (distorted) structure composed of N vertexes,
the coordinates of which are {Qk , k ) 1,2...N}, one
searches for the vertex coordinates of the nearest
perfectly G-symmetric object (G being a specific sym-
metry group), {Pk ) 1,2...N}. Once at hand, the sym-
metry measure is defined as

where Q0 is the coordinates vector of the center of mass
of the investigated structure, and where the denomina-
tor is a mean square size normalization factor, D,
summing over all N distances from Q0 to the vertexes
of the original structure. It was proven elsewhere28 that
the bounds are 100 e S e 0: if a structure has the
desired G-symmetry, S(G) ) 0 and the symmetry
measure increases as it departs from G-symmetry,
reaching maximal value (not necessarily 100). The

maximal value of 100 is obtained if, e.g., one wishes to
find the degree of pentagonality of a hexagon: the
nearest pentagon to a hexagon is the collapsed pentagon
into a single center point, the distance of which is, by
definition, 100. All S(G) values, regardless of G or of
the structure, are on the same scale and therefore
comparable. One can compare the degree of, say, perfect
tetrahedricity (Td-ness) and square planarity (the degree
of D4h-ness) of various distorted four-ligands mol-
ecules;49 one can compare the D4h-ness of molecules with
different number of ligands; or one can compare differ-
ent symmetry contents of different molecules. The main
computational problem has been to find the nearest
structure that has the desired symmetry, namely how
to minimize eq 1 in order to get {Pk, k ) 1,2...N}. Several
methods, both general and problem-specific, have been
constructed toward this goal, and are described in refs
17 and 30. For the evaluation of the level of tetrahedral
distortion, S(Td), we use in this report the method of
ref 30, and for evaluation of rotational symmetry
content, S(Cn), we use the method described in ref 50.
As mentioned above, an important feature of the CSM
approach is that it provides the actual shape of the
nearest, searched symmetric object, i.e., the structure
of the set of {Pi}.

II. Degree of Chirality. Evaluating the chirality con-
tent, Sch, of an object by the CCM approach is based on
the determination of the degree of the nearest achiral
symmetry point group content.29 This means searching
for the minimal distance that the vertexes of the object
have to undergo in order to attain achirality. The
nearest achiral structure may have one reflection plane,
and in this case S(Gachiral) ) Sch ) S(Cs), i.e., the nearest
achiral point group is composed of the reflection and
identity elements. A relevant example for this report is
the helix: the nearest achiral structure to a helix is a
plane onto which the helix points have been collapsed.39

Another relevant example is the case of a chirally
distorted tetrahedron, where the nearest achiral struc-
ture may be, e.g., of C2v symmetry. The nearest achiral
structure may even contain more than one mirror
plane.51,52 The achirality of the nearest structure need
not be based on a mirror plane, but may have its origin
in other improper symmetry elements such as inver-
sion34,53 or any Sn (n, an even integer). In practice, for
the evaluation of the CCM, S(G) is evaluated for every
(relevant) Gachiral and the minimal value is chosen;
however, very often, Sch ) S(Cs). Finally, S(Cs) can never
reach the maximal value of 100, because the distance
to a nearest mirror plane is always smaller than the
distance to a center point (see ref 29 for an explanation).

III. Specific Symmetry and Specific Chirality. In the
context of the extension of the CSM and CCM ap-
proaches from molecules to materials, we define an
additional symmetry measure, the specific symmetry
measure, S*(G), and its special case of specific chirality
measure, S*ch. The need for that additional measure
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arises from the size-normalized S(G) through its division
by the sum of the squared distances (eq 1). Although
this normalization is useful and needed for the com-
parison of different molecules and building blocks,
consider the situation of a macromolecule composed of
repeating units, such as the helix of quartz. Then, while
the Σ|Qk - Pk|2 term in eq 1 for each of the units along
the helix (say, the k vertexes that form one turn) is the
same, the distance of each Qk to Q0 increases along the
helix. In such cases the denominator increases faster
than the nominator and S(G) decreases with size,
blurring the fact that there is a constant value to the
repeated unit. Hence, there is also use for a symmetry
measure which is not size normalized, namely

S*(G) is a density-like (or specific) structural property.
Because the number of atoms in a unit length of the
helix is constant, division of Σ|Qk - Pk|2 by N is
equivalent to the division by the total helix length, and
one expects it to reach a constant value, which is
characteristic of the bulk as a whole. Thus, whereas we
shall use Sch to address questions such as the chirality
of the second shell tetrahedron, SiSi4, S*ch will be used
for answering a question such as, what is the chirality
of quartz as a whole, along the helix axis?

3. Results and Interpretations: Structural
Analyses

3.1. Symmetry and Chirality Analyses of the
Elementary Building Blocks of Quartz. For the
analysis of the symmetry and chirality of quartz we
selected three characteristic units: the basic tetra-
hedron SiO4 (which we shall call the first tetrahedron),
the second-nearest tetrahedron SiSi4 (the second tetra-
hedron), and the Si(OSi)4 unit. The helices of quartz are
investigated in the next section (3.2).

SiO4 in quartz is not a perfect tetrahedron. A typical
specific example54 was found to be characterized by two
pairs of bonds of different lengths, 1.608 and 1.609 Å,
by two angles of 108.7°, two other angles of 110.5°, one
angle of 108.8°, and one of 109.5°. On our symmetry
scale the degree of tetrahedricity of this unit is S(Td) )
0.0094. This deviation value from tetrahedricity is
small, but, as we shall see below, significant. It should
be noted that in many structural studies of quartz and
other silicates, an assumption is made that SiO4 is a
perfect tetrahedron;16 we stress that this is not the case
and that the imperfection in this elementary building
block is amplified in larger units. Indeed, the tetra-
hedral distortion of the second tetrahedron (SiSi4) is
more pronounced with S(Td) ) 4.652.

Once established as imperfect tetrahedra, the devia-
tions of SiO4 and SiSi4 from tetrahedricity can be such
that some of the reflection mirrors are retained (e.g., a
distortion leading from Td to C2v), or such that remove
all of the reflection mirrors. The latter case is special
because if this type of distortion occurs, it leads to

chirality of the building blocks. And, indeed, it turns
out that in quartz, both the first and the second
tetrahedra contain no mirror planes; both are therefore
chiral. Interestingly, the chirality is not due to a drop
in symmetry from Td to C1; a C2-rotation axis is retained
in both tetrahedra. The degree of chirality of SiO4

54 is
Sch ) 0.0007, which is very small; and that of SiSi4 is
Sch ) 0.555. We see that the second tetrahedron is more
Td- distorted and also more chiral. (This need not always
be the case: a tetrahedron, as explained above, can be
distorted into one of the achiral Td-subgroups). The
CCM methodology also identifies the nearest achiral
structure, which for SiO4 and for SiSi4 is a C2v tetra-
hedron.

Chirality analysis is also applicable to the full unit
of Si(OSi)4, which is not a distorted Td, but a distorted
S4 symmetry (the symmetry of an improper rotation axis
of order 4)-building block. Being an achiral point group,
S(S4) ) Sch and the specific value for Si(OSi)4 is 0.743,
with the nearest achiral object being a perfect S4.55 It
is the easy compressibility of the SiOSi angle within this
building block57 that enables the rich library of the
many different types of silicates.

Finally, going to various quartz sources and origins,
it is interesting to see the level of variability in the
tetrahedricity and chirality values, if such exists at
all. Variability was indeed detected, and typical ex-
amples8,9,14,15,54,58-65 are collected in Figure 2.

3.2. Symmetry and Chirality of the Helices of
Quartz. I. Helical Structure and Its Relation to the
Tetrahedral Unit. It was first suggested by Fresnel that
the structural dissymmetry of a uniaxial crystal such
as quartz is due to a helical arrangement of the atoms.66

Indeed, the most representative molecular feature of
quartz is that the silicon atoms, the oxygen atoms, and
various possible units composed of these atoms, are
arranged in a variety of helical laces. In particular,
literature has focused on the helices, which are com-
posed of SiO4 tetrahedra linked through a shared
oxygen atom (Figure 1). Several types of SiO4 helices
can be identified within quartz, depending on the angle
of view.67 For instance, a common viewing angle of the
structure of quartz is through the c axis (the optical
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axis), i.e., along the screw axis of the unit cell (Figure
1, top), where one can identify two types of helices.68

One helix is composed of three SiO4 tetrahedra per turn
(which we call the H-3 helix). This helix is used as the
crystallographic screw axis label for quartz, 32, with 31
as its enantiomeric helix (Figure 1, right), i.e., the
crystallographic chiral space group labels of quartz are
P3221 for the right-handed helix and P3121 for its
enantiomer. Another helical structure that can be
identified along the c axis is composed of paired helices
of the same handedness (as in DNA’s double helix) with
six tetrahedra per turn (which we call the H-6 helices,
Figure 1, left). Interestingly, the H-3 and the H-6 helices
are of opposite handedness. Despite these opposite
helicities, the crystal as a whole is chiral. If helices
within a structure are the same but with opposite
handedness forming an internal racemic structure, then
the crystal as a whole will be achiral. In quartz,
however, the opposite handedness retains the overall
chirality because the opposing helices are different.

An important question regards the possible connec-
tion between the chirality of the SiO4 building block and
the chiral helical structure: Does the chirality of the

small building block trigger the helix formation, or is it
the chirality of the helix that imposes distortion of the
SiO4 tetrahedron? We propose that the latter reflects
the situation for quartz. It should be noted first that
for a general helical graph, not only is it chiral as a
whole, but any portion of it - an arc of any length -
must be chiral as well. However, in the physical world,
there is a lower limit of building blocks of finite size,
and even if they are achiral (atoms, pixels33) they still
can be connected in the form of a helix. In this case,
the minimal chiral unit - the shortest arc - will be a
segment of four building blocks (because one, two, and
three building blocks are the achiral point, line, and
plane, respectively). So it seems that, a priori, one could
build a helix from Si and O atoms, leaving the structural
burden on the Si-O-Si bond. Indeed, torsions, which
are based on large amplitude vibrations,69 require only
small forces. But how should the fact that each of the
Si and O atoms is part of a helix affect the tetrahedral
symmetry? Smith showed,70 based on symmetry con-
siderations and unit-cell data, that the SiO4 tetrahedron
(in both high and low quartz) must be slightly distorted.
The possibility exists that the small chirality of the first
tetrahedral building block of quartz is inherent (in the
gas phase) and therefore dictates the chirality of the
whole (as in the numerous reports of linear polymers
which easily fold into helices by only minute chiral
disturbances 71). But, to the best of our knowledge, there
is no proof that this is the case for quartz. In this context
we mention that Hargittai et al.72 observed flattening
of the S4 symmetry of gas-phase Si(OMe)4. However,
although symmetry analysis of the SiO4 core in this
molecule resulted in S(Td) ) 0.2379, the unit as a whole
is C2v-achiral.

The hundreds of known SiO4-based silicates and
zeolites (all of which are based on the SiO4 unit) point
to the other possibility, namely that the helix is an
energetic (local) minimum structure (as evident, in fact,
by the very existence of quartz in nature), and that it
is this long-range structure that imposes chirality on
its own building blocks. Thus, in the rich map of silicate
energy minima which are due to long-range structures,
each of these structures “pays” by distorting its SiO4
unit in a unique way. Helical SiO4 are found not only
in quartz but in other silicates as well,73 and we mention
that there is growing evidence for helical SiO4-based
structures even in disordered silica sol-gel materi-
als.74,75 Finally, it may be more than a coincidence that
the C2 symmetry which is characteristic of a perfect
helix, is also the symmetry of the distorted SiO4 unit.
As mentioned above, the force required for the torsion
of a linear chain into a helix is weak,69 but then the
accumulated force of the chain as a whole is enough to

(68) Heaney, P. J. Rev. Mineral. 1994, 29, 1.

(69) Rankin, D. W. H. In Structures and Conformations of Non-
Rigid Molecules; Laane, J., Dakkouri, M., van der Veken, B., Ober-
hammer, H., Eds.; Kluwer Publishing: Amsterdam, 1993; p 519.

(70) Smith, G. S. Acta Crystallogr. 1963, 16, 542.
(71) Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang,

J. Z.; Calhoum, B. H.; Harris, F. W.; Chien, L.-C.; Lotz, B. J. Am. Chem.
Soc. 2001, 123 (10), 2462.

(72) Boonstra, L. H.; Mijlhoff, F. C.; Renes, G.; Spelbos, A.;
Hargittai, I. J. Mol. Struct. 1975, 28, 129.

(73) Peacor, D. R. Z. Kristallogr. 1973, 138, 274.
(74) Jung, J. H.; Ono, Y.; Hanabusa, K.; Shinkai, S. J. Am. Chem.

Soc. 2000, 122, 5008.
(75) Yang, S. M.; Sokolov, I.; Coombs, N.; Kresge, C. T.; Ozin, G.

A. Adv. Mater. 1999, 11, 1427.

Figure 2. Variability in the degree of the tetrahedricity and
the chirality values for the first tetrahedron, SiO4 (a), and for
the second tetrahedron, SiSi4 (b), as obtained from x-ray data
on quartz from various sources.8,9,14,15,54,58-65
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show up in the slight helical torsion of the tetrahedral
building block.

II. Helicity, Symmetry, and Chirality of Quartz Heli-
ces. Following the general comments on the helicity, we
now move to the quantitative evaluation of its symmetry
and chirality. The helix we analyze is the general (SiO4)n
helix, where we sweep over n. To evaluate the degree
of helicity within quartz, one must define the reference
“ideal” helical shape. There are many ways to define
the ideality of a helix: it may be conical, cylindrical,
with polygonal top projection, with regular pitch or an
oscillating one, and so on. We evaluated the degree of
the helicity of finite-size helix-segments by probing two
symmetry elements which are of relevance to the quartz
helices: the C2-symmetry (with the C2 axis bisecting the
long helical axis), which represents an ideal cylindrical
helix; and the C3 symmetry of the top projection (Figure
1), which represents the P3221 space group. Perfect
helicity is then characterized then by zero values for
S(C2) and S(C3).

Six types of helices within quartz were examined
(Figure 3): the H-3 helix of SiO4 tetrahedra; the helix
formed by the skeleton of silicon atoms (H-3(Si)); the
helix of the inner oxygen atoms (the oxygen atoms that
form the inner “hole”, H-3(O)); one of the two H-6
tetrahedral helices (Figure 1); and its corresponding
H-6(Si) and H-6(O) helices.

H-3 Helices. The S(C3) value of the projection of all
three H-3 helices is zero, representing the P3221 space
group, and so is the S(C2) of the Si atoms helix, H-3(Si),
and of the O atoms helix, H-3(O) (Figure 4a). Thus, the
helicities of the Si skeleton and of the O skeleton are
perfect. Not so for the S(C2) of the full tetrahedra (Figure
4a), in which the S(C2) the value rises steeply to a
maximum at three tetrahedra, and then gradually
decreases. The perfect C2 symmetry of the skeletons
helix (Si and O) is lost in the full tetrahedral helical
structure, already at the fragment of two tetrahedra
(despite the fact that each tetrahedron is C2 symmetric).
Following the maximum, the S(C2) value decreases
gradually because of the size normalization of the
symmetry measure. To understand it intuitively imag-
ine an extremely (“infinitely”) long helix, squeezed into
a unit size; then the helical angle approaches zero, and
one has a helix which is almost a stack of parallel rings.
The C2-symmetry of such a stack is perfect, and there-
fore S(C2) approaches zero.

The perfectly C2-symmetric H-3(O) and H-3(Si) helices
are, of course, chiral, but so is a helix which deviates

from this symmetry, namely the full H-3 helix, as shown
in Figure 5a. Note that the chirality of the helices is
much higher than the chirality of the three molecular
building blocks analyzed in Section 3.1. Because the
chirality of H-3(O) and H-3(Si) is due solely to its perfect
helicity, understanding its behavior will serve as a
reference to the understanding of the other helices. It
is seen that the two helices behave similarly (Figure 5a).
As explained above, after the first three atoms, all of
which are achiral (a point, a line, and a plane, respec-
tively), the fourth atom forms the smallest chiral helix
segment. Interestingly, this segment is also the most
chiral one. From this point and on, the chirality falls
down gradually with size, as we have seen for S(C2),
and for a similar reason given for the S(C2) behavior: a
helix which is practically a stack of parallel rings is
achiral.

We note that the chirality of the Si helix is higher
than the chirality of the O helix. This is due to the fact
that the radius of the O helix is smaller than the radius
of the Si helix. To understand why reducing the radius
of a helix decreases its chirality, consider again a helix
which is infinitely thin and therefore achiral. The
tetrahedral helix, H-3, follows an overall similar trend,
but it is clerically seen that an oscillatory behavior is
superimposed on it every fourth tetrahedron, namely
after every 4/3 turns. In fact, after rising from almost
zero for the first tetrahedron, the most chiral segment

Figure 3. Six types of helices within quartz analyzed in this
report (shown at the same projection of Figure 1, top): helices
of SiO4 tetrahedra (dotted lines) of H-3 and of H-6; the helices
formed by the skeleton of silicon atoms (H-3(Si) and H-6(Si),
open circles); and the helices of the inner oxygen atoms (H-
3(O) and H-6(O), black circles).

Figure 4. Changes in the degree of C2 symmetry of the six
types of helices (Figure 3) in low-quartz: (a) H-3 helices; (b)
H-6 helices.
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is obtained, namely the first four-tetrahedron segment
(Figure 5a), and this peak repeats itself with diminish-
ing power every four tetrahedra. Elsewhere we analyzed
the behavior of helices and of a mathematical helix39

and showed that the oscillatory superposition (more
weakly recognizable in the Si and O skeleton helices)
is an inherent property of this structure.

H-6 Helices. As for the H-3 helices, the S(C3) values
of the projections of the three H-6 helices (the Si helix,
the O helix, and the tetrahedral helix) are zero, again
representing the P3221 space group. Interestingly, the
S(C2) of the H-6 helices (Figure 4b) behaves completely
differently than the S(C2) of the H-3 helices (Figure
4a): pronounced oscillations in the symmetry values
appear, and all three H-6 helices oscillate in their S(C2)
values between perfect and gradually decreasing im-
perfect C2 symmetry. For the full H-6 helix and for the
H-6(Si) helix the S(C2) is zero at every odd unit, whereas
for the H-6(O) it is zero at every even unit. The lack of
C2 symmetry in every even or odd unit can be under-
stood by considering the c-axis projections of the helices
(Figure 3) as reflecting the properties of the P3221 space
group. Thus, these projections show that although for
the oxygens the C3-symmetry is due to a hexagon whose
bond lengths change alternatively while keeping the
angles at 120°, for the silicons helix the C3-symmetry
is obtained by keeping the bond length of a perfect
hexagon fixed while alternating the projected bond

angles (between 108.3° and 131.7°). Thus, as demon-
strated in Figure 3, for the oxygens helix projection,
there is a C2 axis, whenever there is an even number of
atoms, which passes through the bond linking two
neighboring atoms of the segment. For the silicons, the
alternating angles of the projection dictate that the C2
axis must pass through an Si atom, leaving to its left
and to its right the same number of atoms; hence the
shift in the behavior of the two helices. The full
tetrahedra-helix behavior resembles that of the silicons
helix because the Si atoms are located at the centers of
the tetrahedra and therefore represent their location.
To visualize this, consider three linked tetrahedra. The
center tetrahedron is C2-symmetric (see above) and so
the axis of the triad must pass through it. As for
chirality, the H-6 helices behave in a manner similar
to that of the H-3 helices (Figure 5b). The maximum
chirality value is again after 4/3 turns, but this time it
takes 8 units to reach this segment length.

Once we have the symmetry and chirality values of
the building blocks and of the helices, we move on to
calculate the specific chirality, S*ch, of these units,
namely the structural characteristics of quartz as a
whole. It is shown (Figure 6) that, as expected, asymp-
totic values are reached, and in fact, they are reached
quite fast. A small number of elementary units already
carries the properties of the whole. Because of this
observation, we have selected the 4-units helix segments
of the H-3 helix of the full tetrahedra as the character-

Figure 5. Changes in the degree of chirality of the six types
of helices in low-quartz: (a) H-3 helices; (b) H-6 helices. Arrows
indicate the oscillations.

Figure 6. Evolution of the specific chirality, S*ch, of the six
types of helices in low-quartz: (a) H-3 helices; (b) H-6 helices.
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istic chirality feature of quartz; hence we find that the
specific chirality of quartz has a value of ∼170.

3.3. Toward the Analysis of Related Materials:
High Quartz and Cristobalite. I. High Quartz. The
phase transition from low to high quartz, around 846
K, leads to higher space group symmetry, namely to
P6222 (or to the enantiomeric P6422) (Figure 7, cf.
Figure 1). The molecular motion leading to the space-
group change is a small rotation of SiO4 tetrahedra
about the 〈100〉 direction.68 Interestingly, the higher
space group symmetry is not associated with a more
perfect tetrahedricity of the SiO4 unit.76 It is S(Td) )
0.572 compared with S(Td) ) 0.0094 for low quartz. By
contrast, the second tetrahedron SiSi4 distorts similarly
in both types of quartz, with S(Td) values of 4.467 and
4.652, respectively. Another difference between high and
low quartz is that that all high quartz helices (the Si,
O, and SiO4 H-3 and H-6 helices) are fully C2-symmetric.
On the other hand, as shown in Figure 8, the degree of
chirality is kept almost unchanged upon the phase
transition. Likewise, the specific chiralities, Sch* are
almost the same: for the tetrahedral H-3 helix it is 178
for high quartz, compared to 173 for low quartz.

II. Cristobalite. The methodology of symmetry and
chirality analysis of crystalline materials developed and
demonstrated in detail for quartz is general and ap-
plicable to other crystalline materials as well. Here we

demonstrate this generality by briefly commenting on
another chiral SiO2 material, low cristobalite73 the space
group of which is P4121. As in quartz, here too the
chirality is due to internal helicity, but with different
details. In the cristobalite crystal one can identify two
different helices along the c axis, as shown in Figure 9.
One has a rectangular projection (the H-r helix) and
the other has a square projection (the H-s helix). In
Figure 10a we show some representative C2-symmetry
trends for this crystal, and it is seen that the behavior
of H-r resembles that of H-3 of low quartz, whereas(76) Wyckoff, R. W. G. Z. Kristallogr. 1926, 63, 507.

Figure 7. Structure of high quartz (viewed trough the c axis),
P6222, with its H-3 and H-6 helices.

Figure 8. Degree of chirality of the H-3 and H-6 tetrahedral
helices in low and high quartz.

Figure 9. Structure of low cristobalite, P4121, viewed along
the c axis. The two helices, one with a rectangular projection
(H-r) and the other with a square projection (H-s), are shown.

Figure 10. Variations in four types of helices of low-
cristobalite crystal in the degree of (a) C2 symmetry and (b)
chirality.
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the behavior of H-s resembles, with its oscillatory
behavior, that of H-6 of low-quartz (Figure 4). The
reasoning for the oscillations in both cases is the same.
As for chirality (Figure 10b) it is interesting to note that,
again, the maximal chirality value is obtained after one
and a third turns of the helix (as in quartz), only that
in this case more tetrahedra are needed for this number
of turns, namely between 5 and 6. Finally, the specific
chirality, Sch* of cristobalite is ∼165 for the rectangular
helix (similar to quartz).

4. Concluding Remarks

We have demonstrated the use of the concept of
continuity in symmetry and chirality as a novel descrip-
tor of the structure of the building blocks of materials.
We emphasize the global nature of these measures
which take into account all the angles and bond lengths.
In this sense this is a new method in structure analysis
studies which traditionally have concentrated on a
selected, specific geometrical feature. We recall that for
an n-vertexes structure there are 3n - 6 degrees of
freedom (9 for AB4 structures), and therefore not taking
all into account may amount to overlooking some
important contributions to the overall distortion. Fur-
thermore, if one wishes to compare different families of
molecules or crystals, only global descriptors can be
used. Changes in specific geometric descriptors will of
course show up in the S(G) values. The correlation

between local and CSM descriptors was analyzed in
detail by Alvarez and Llunell.31

The particular example we have selected for this
study, quartz, was analyzed in depth. All of the impor-
tant molecular building blocks were investigated, as
were quartz’ helices, and trends in their variation with
size have been revealed and explained. It has become
possible now to write a sentence such as “the specific
geometric chiralities of low and high quartz are 170 and
180, respectively” and compare it to the cristobalite
values of 165.

The next step then is to identify possible correlations
between external parameters that affect the structure
of materials, such as pressure and temperature, and
symmetry and chirality; and possible correlations be-
tween symmetry and chirality and physical properties
such as optical rotation; these, in the context of quartz,
are the topics of our next reports.

Programs Availability. Scholars wishing to use the
symmetry and chirality measurement programs are
welcome to approach the authors.
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